OpenFCST: The open-source Fuel Cell Simulation Toolbox
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
Static Public Attributes | Protected Member Functions | Protected Attributes | List of all members
FuelCellShop::Layer::ConventionalCL< dim > Class Template Reference

This class characterizes a catalyst layer and uses this information to compute effective transport properties and interfacial areas for phase change or electrochemical reactions. More...

#include <conventional_CL.h>

Inheritance diagram for FuelCellShop::Layer::ConventionalCL< dim >:
Inheritance graph
[legend]
Collaboration diagram for FuelCellShop::Layer::ConventionalCL< dim >:
Collaboration graph
[legend]

Public Member Functions

Constructors, destructor, and initalization
 ConventionalCL ()
 
 ~ConventionalCL ()
 Destructor.
 
Accessors and info
virtual void print_layer_properties () const
 Print out the volume fraction in the catalyst layer.
 
virtual void get_volume_fraction (double &epsilon_S_out, double &epsilon_V_out, double &epsilon_N_out) const
 Get the volume fractions in the catalyst layer.
 
virtual double get_V_Pt () const
 Return the platinum loading per cm3 catalyst layer.
 
double get_active_area_Pt () const
 Get the active area of platinum per unit volume of CL.
 
Effective property calculators
virtual void effective_gas_diffusivity (const double &, double &) const
 Compute the effective diffusivty in the CL.
 
virtual void effective_gas_diffusivity (Table< 2, Tensor< 2, dim > > &) const
 Compute the effective diffusivty in the CL.
 
virtual void effective_electron_conductivity (double &) const
 Compute the effective electron conductivity in the CL.
 
virtual void effective_electron_conductivity (Tensor< 2, dim > &) const
 Compute the effective electron conductivity in the CL as an anisotropic tensor.
 
virtual void derivative_effective_electron_conductivity (std::vector< double > &) const
 Compute the derivative of the effective electron conductivity in the GDL with respect to either the solution or design parameters.
 
virtual void effective_proton_conductivity (double &) const
 Compute the effective proton conductivity in the CL.
 
virtual void effective_proton_conductivity (std::vector< double > &) const
 Compute the effective proton conductivity, at all quadrature points in the cell, mainly as a function of Temperature.
 
virtual void derivative_effective_proton_conductivity (std::map< VariableNames, std::vector< double > > &) const
 Compute the derivative of the effective proton conductivity in the CL with respect to either the solution or design parameters.
 
virtual void effective_water_diffusivity (double &) const
 Compute the effective water diffusivity (lambda diffusivity) in the CL.
 
virtual void effective_water_diffusivity (std::vector< double > &) const
 Compute the effective water diffusivity (lambda diffusivity) at all quadrature points in the CL.
 
virtual void derivative_effective_water_diffusivity (std::map< VariableNames, std::vector< double > > &) const
 Compute the derivative of the effective water diffusivity (lambda diffusivity) in the CL with respect to either the solution or design parameters.
 
- Public Member Functions inherited from FuelCellShop::Layer::CatalystLayer< dim >
virtual void set_constant_solution (const double &value, const VariableNames &name)
 Set those solution variables which are constant in the particular application.
 
virtual void set_solution (const std::vector< SolutionVariable > &)
 This method is used to set the solution variable values in the kinetics object, at all quadrature points in the cell.
 
virtual void set_derivative_flags (const std::vector< VariableNames > &flags)
 Method used to set the variables for which you would like to compute the derivatives in the catalyst layer.
 
void set_reaction_kinetics (const std::string &rxn_name)
 Member function used to specify the reaction for which the kinetic parameters are needed, for example for a Platinum catalyst, we can specify that we need the kinetic parameters for either the oxygen reduction reaction (ORR) or the hydrogen oxidation reaction (HOR)
 
const std::type_info & get_base_type () const
 This member function returns a type_info object with the name of the base layer type the inherited class belongs to, i.e.
 
virtual void effective_gas_diffusivity (Table< 2, double > &) const
 Return the effective diffusivty in the GDL for all the gases assigned to the layer using set_gases_and_compute.
 
virtual void derivative_effective_electron_conductivity (std::vector< Tensor< 2, dim > > &) const
 Compute the derivative of the effective electron conductivity in the GDL with respect to either the solution or design parameters.
 
virtual void gas_permeablity (double &) const
 Compute the CL gas permeability.
 
virtual void gas_permeablity (Tensor< 2, dim > &) const
 Compute the CL gas permeability.
 
virtual void derivative_gas_permeablity (std::vector< double > &) const
 Compute the derivative of the effective gas permeability in the GDL with respect to either the solution or design parameters.
 
virtual void derivative_gas_permeablity (std::vector< Tensor< 2, dim > > &) const
 Compute the derivative of the effective gas permeability in the GDL with respect to either the solution or design parameters.
 
virtual void liquid_permeablity (double &) const
 Compute the GDL liquid permeability.
 
virtual void liquid_permeablity (Tensor< 2, dim > &) const
 Compute the GDL liquid permeability.
 
virtual void derivative_liquid_permeablity (std::vector< double > &) const
 Compute the derivative of the effective gas diffusion in the GDL with respect to either the solution or design parameters.
 
virtual void derivative_liquid_permeablity (std::vector< Tensor< 2, dim > > &) const
 Compute the derivative of the effective gas diffusion in the GDL with respect to either the solution or design parameters.
 
virtual void current_density (std::vector< double > &)
 This member function will use a FuelCellShop::BaseKinetics class in order to compute the current density production in the CL.
 
virtual void current_density (std::vector< double > &, std::vector< double > &)
 This member function will use a FuelCellShop::BaseKinetics class in order to compute the current density production in the CL.
 
virtual void derivative_current_density (std::map< VariableNames, std::vector< double > > &)
 This member function will use a FuelCellShop::BaseKinetics class in order to compute the derivative of the current density with respect to the variables setup using set_derivative_flags.
 
virtual
FuelCellShop::Material::PolymerElectrolyteBase
get_electrolyte () const
 Method to provide access to pointer of the electrolyte object of the catalyst layer.
 
virtual
FuelCellShop::Kinetics::BaseKinetics
get_kinetics () const
 Method to provide access to pointer of the kinetic object of the catalyst layer.
 
- Public Member Functions inherited from FuelCellShop::Layer::PorousLayer< dim >
void set_gases_and_compute (std::vector< FuelCellShop::Material::PureGas * > &gases_in, const double &pressure_in, const double &temperature_in)
 Member function used to store all the gases that are in the pore space in the gas diffusion layer as well as their temperature [Kelvin] and total pressure [atm].
 
void compute_gas_diffusion (FuelCellShop::Material::PureGas *solute_gas, FuelCellShop::Material::PureGas *solvent_gas)
 Member function used to compute bulk diffusion coefficients and derivatives w.r.t temperature for non-isothermal case and store inside the layer.
 
void set_gases (std::vector< FuelCellShop::Material::PureGas * > &gases_in, const double &pressure_in)
 Member function used to store all the gases that are in the pore space in the porous layer.
 
void set_temperature (const SolutionVariable &T_in)
 Member function used to set the temperature ]Kelvin] at every quadrature point inside the cell.
 
FuelCellShop::Material::PureGasget_gas_pointer (int index) const
 Return the FuelCellShop::Material::PureGas pointer that is stored inside the class in the ith position.
 
std::vector
< FuelCellShop::Material::PureGas * > 
get_gases () const
 Returns the vector of FuelCellShop::Material::PureGas pointers stored in the porous layer.
 
void get_gas_index (FuelCellShop::Material::PureGas *gas_type, int &index) const
 Return the gas index in the GDL class.
 
void get_T_and_p (double &T, double &p) const
 Return the constant temperature [Kelvin] and constant pressure [atm] inside the layer.
 
void get_p (double &p) const
 Return the constant pressure [atm] inside the layer.
 
virtual bool test_layer () const
 This virtual class should be used for any derived class to be able to test the functionality of the class.
 
- Public Member Functions inherited from FuelCellShop::Layer::BaseLayer< dim >
void set_position (std::vector< Point< dim > > &p)
 Member function used by some applications such as dummyGDL in order to know which value to return.
 
bool belongs_to_material (const char material_id)
 Check if a given cell belongs to the catalyst layer.
 
const std::string & name_material ()
 Return the name of the layer.
 
virtual bool test_layer ()
 This virtual class should be used for any derived class to be able to test the functionality of the class.
 
unsigned int get_material_id ()
 Return the material id of the layer.
 

Static Public Attributes

static const std::string concrete_name
 Concrete name used for objects of this class.
 

Protected Member Functions

void compute_volume_fraction ()
 Compute porosity and volume fraction of solid and ionomer in the catalyst layer.
 
void compute_Av ()
 Compute the active area of catalyst in the layer by the specified method.
 
void derivative_effective_proton_conductivity_wrt_electrolyte_loading (double &) const
 Compute the derivative of the effective proton conductivity w.r.t.
 
void derivative_volume_fractions (double &Depsilon_S, double &Depsilon_V, double &Depsilon_N) const
 Function to compute the partial derivative of the volume fraction the different phases in the catalyst layer with respect to the design variables of the optimization problem.
 
void get_method_transport_property_pores (std::string &method)
 Get the effective transport method in the pores.
 
void get_method_transport_property_electrolyte (std::string &method)
 Get the effective transport method in the electrolyte.
 
void get_method_transport_property_solid (std::string &method)
 Get the effective transport method in the solid phase.
 
double depsilon_S_cat_dprc_Pt (const double V_Pt, const double prc_Pt) const
 Inline function to compute

\[ \frac{\partial \epsilon_S^{cat}}{\partial \%Pt} \]

.

 
double depsilon_S_cat_dVPt (const double prc_Pt) const
 Inline function to compute

\[ \frac{\partial \epsilon_S^{cat}}{\partial m_{Pt}} \]

.

 
double depsilon_V_cat_depsilon_S_cat () const
 Inline function to compute

\[ \frac{\partial \epsilon_V^{cat}}{\partial \epsilon_S^{cat}} \]

.

 
double depsilon_V_cat_depsilon_N_cat () const
 Inline function to compute

\[ \frac{\partial \epsilon_V^{cat}}{\partial \epsilon_S^{cat}} \]

.

 
Constructors
 ConventionalCL (std::string name)
 Constructor.
 
void declare_parameters (const std::string &cl_section_name, ParameterHandler &param) const
 Declare parameters for a parameter file.
 
void set_parameters (const std::vector< std::string > &name_dvar, const std::vector< double > &value_dvar, const std::string &cl_section_name, ParameterHandler &param) const
 Member function used to set new parameters values in the optimization loop.
 
void initialize (ParameterHandler &param)
 Member function used to read in data and initialize the necessary data to compute the coefficients.
 
- Protected Member Functions inherited from FuelCellShop::Layer::CatalystLayer< dim >
 CatalystLayer ()
 
 ~CatalystLayer ()
 Destructor.
 
 CatalystLayer (const std::string &name)
 Constructor.
 
virtual boost::shared_ptr
< FuelCellShop::Layer::CatalystLayer
< dim > > 
create_replica (const std::string &name)
 This member function is used to create an object of type gas diffusion layer.
 
- Protected Member Functions inherited from FuelCellShop::Layer::PorousLayer< dim >
 PorousLayer (const std::string &name)
 Constructor.
 
 PorousLayer ()
 Constructor.
 
virtual ~PorousLayer ()
 Destructor.
 
virtual void declare_parameters (ParameterHandler &param) const
 Declare parameters for a parameter file.
 
void set_parameters (const std::string &object_name, const std::vector< std::string > &name_dvar, const std::vector< double > &value_dvar, ParameterHandler &param)
 Member function used to change the values in the parameter file for a given list of parameters.
 
virtual void set_parameters (const std::vector< std::string > &name_dvar, const std::vector< double > &value_dvar, ParameterHandler &param)
 Member function used to change the values in the parameter file for a given list of parameters.
 
virtual void gas_diffusion_coefficients (Table< 2, double > &) const
 Return the molecular diffusivty all the gases assigned to the layer using set_gases_and_compute.
 
virtual void derivative_gas_diffusion_coefficients (std::vector< Table< 2, double > > &) const
 Return the derivative of the molecular diffusion coefficient with respect to the derivative flags for all the gases assigned to the layer using set_gases_and_compute.
 
- Protected Member Functions inherited from FuelCellShop::Layer::BaseLayer< dim >
 BaseLayer ()
 Constructor.
 
 BaseLayer (const std::string &name)
 Constructor.
 
virtual ~BaseLayer ()
 Destructor.
 

Protected Attributes

double epsilon_N
 Volume fraction of Nafion in the cathode catalyst layer.
 
double epsilon_V
 Void volume fraction (Porosity) of the catalyst layer.
 
double epsilon_S
 Solid volume fraction in the catalyst layer.
 
double epsilon_W
 Volume fraction of water in the cathode catalyst layer.
 
double rho_Pt
 Density of platinum.
 
double rho_c
 Density of support material.
 
double prc_Pt
 Percentage of platinum per carbon on the catalyst layer.
 
double V_Pt
 Platinum loading at the catalyst layer per unit volume.
 
double M_Pt
 Platinum loading at the catalyst layer per unit area.
 
double Av
 Active area of catalyst per unit volume of catalyst layer.
 
std::string method_Av
 Method to compute active area.
 
std::string method_porosity
 Method to compute porosity.
 
double L_CL
 Layer thickness.
 
double rho_N
 Density of electrolyte.
 
double loading_N
 Electrolyte loading.
 
double prc_N
 Percentage (mass fraction) of electrolyte in the catalyst layer.
 
std::string method_eff_property_pores
 Method used to compute effective properties – Type of network.
 
double porosity_th
 Porous network threshold.
 
double porosity_mu
 Porous network constant.
 
double porosity_gamma
 
std::string method_eff_property_solid
 Method used to compute effective properties – Type of network.
 
double solid_electron_conductivity
 Input electron conductivity.
 
double solid_th
 Solid phase network threshold.
 
double solid_mu
 Solid phase network constant.
 
std::string method_eff_property_electrolyte
 Method used to compute effective properties – Type of network.
 
double electrolyte_proton_conductivity
 Input electrolyte proton conductivity.
 
double electrolyte_th
 Electrolyte network threshold.
 
double electrolyte_mu
 Electrolyte network constant.
 
double sigma_p
 Electrolyte proton conductivity.
 
double E0
 Theoretical open-circuit voltage under the operating conditions.
 
- Protected Attributes inherited from FuelCellShop::Layer::CatalystLayer< dim >
std::string diffusion_species_name
 If CL properties are stored inside the class (e.g.
 
bool default_materials
 If the default materials are used in the layer, this will be set to true.
 
std::string catalyst_type
 Catalyst type from input file.
 
std::string catalyst_support_type
 Catalyst Support type from input file.
 
std::string electrolyte_type
 Electrolyte type from input file.
 
std::string kinetics_type
 Kinetic class type from input file.
 
boost::shared_ptr
< FuelCellShop::Material::PolymerElectrolyteBase
electrolyte
 Pointer to the electrolyte object created in the application that is used to calculate the properties of the electrolyte in the catalyst layer.
 
boost::shared_ptr
< FuelCellShop::Material::CatalystSupportBase
catalyst_support
 Pointer to the catalyst support object created in the application that is used to calculate the carbon black conductivity in the catalyst layer.
 
boost::shared_ptr
< FuelCellShop::Material::CatalystBase
catalyst
 Pointer to the catalyst object created in the application that is used to store the properties of the catalyst used in the layer.
 
boost::shared_ptr
< FuelCellShop::Kinetics::BaseKinetics
kinetics
 Pointer to a kinetics object.
 
unsigned int n_quad
 Stores the number of quadrature points in the cell.
 
std::map< VariableNames,SolutionVariablesolutions
 Map storing solution variables.
 
VariableNames reactant
 Name of the reactant which is being solved for in the catalyst layer.
 
- Protected Attributes inherited from FuelCellShop::Layer::PorousLayer< dim >
std::string diffusion_species_name
 If GDL properties are stored inside the class (e.g DummyGDL) then, return the property stored under coefficient_name name.
 
std::vector
< FuelCellShop::Material::PureGas * > 
gases
 Gases inside the layer.
 
double temperature
 Temperature [Kelvin] used to compute gas diffusivity.
 
double pressure
 Total pressure [atm] used to compute gas diffusivity.
 
SolutionVariable T_vector
 Temperature at every quadrature point inside the cell.
 
Table< 2, double > D_ECtheory
 Tensor of diffusion coefficients – This are computed with setting up the gas so that they do not need to be recomputed all the time.
 
std::vector< Table< 2, double > > dD_ECtheory_dx
 Vector of tensors for the derivative of the diffusion coefficients – This are computed with setting up the gas so that they do not need to be recomputed all the time.
 
std::vector< double > D_bulk
 Vector of bulk diffusion coefficients at every quadrature point inside the cell.
 
std::vector< double > dD_bulk_dT
 Vector of derivative of bulk diffusion coefficients w.r.t temperature, at every quadrature point inside the cell.
 
- Protected Attributes inherited from FuelCellShop::Layer::BaseLayer< dim >
const std::string name
 Name of the layer.
 
unsigned int material_id
 Identification number.
 
std::vector< Point< dim > > point
 Coordinates of the point where we would like to compute the effective properties.
 
std::vector< VariableNamesderivative_flags
 Flags for derivatives: These flags are used to request derivatives.
 
std::map< VariableNames, double > constant_solutions
 Map storing values of solution variables constant in a particular application.
 

Additional Inherited Members

- Static Public Member Functions inherited from FuelCellShop::Layer::CatalystLayer< dim >
static void declare_CatalystLayer_parameters (const std::string &cl_section_name, ParameterHandler &param)
 Function used to declare all the data necessary in the parameter files former all CatalystLayer children.
 
static void set_CatalystLayer_parameters (const std::vector< std::string > &name_dvar, const std::vector< double > &value_dvar, const std::string &cl_section_name, ParameterHandler &param)
 
static boost::shared_ptr
< FuelCellShop::Layer::CatalystLayer
< dim > > 
create_CatalystLayer (const std::string &cl_section_name, ParameterHandler &param)
 Function used to select the appropriate CatalystLayer type as specified in the ParameterHandler under line.
 
- Protected Types inherited from FuelCellShop::Layer::CatalystLayer< dim >
typedef std::map< std::string,
CatalystLayer< dim > * > 
_mapFactory
 This object is used to store all objects of type CatalystLayer.
 
- Static Protected Member Functions inherited from FuelCellShop::Layer::CatalystLayer< dim >
static _mapFactoryget_mapFactory ()
 Return the map library that stores all childrens of this class.
 
Friend class for Unit Testing

Detailed Description

template<int dim>
class FuelCellShop::Layer::ConventionalCL< dim >

This class characterizes a catalyst layer and uses this information to compute effective transport properties and interfacial areas for phase change or electrochemical reactions.

This class implements a macrohomogeneous catalyst layer.

Constructor & Destructor Documentation

Warning
For internal use only.

Constructor used only to create a prototype. Do not use in general since this will not include the name of the section in the parameter file you need.

Destructor.

template<int dim>
FuelCellShop::Layer::ConventionalCL< dim >::ConventionalCL ( std::string  name)
protected

Constructor.

Member Function Documentation

template<int dim>
void FuelCellShop::Layer::ConventionalCL< dim >::compute_Av ( )
protected

Compute the active area of catalyst in the layer by the specified method.

template<int dim>
void FuelCellShop::Layer::ConventionalCL< dim >::compute_volume_fraction ( )
protected

Compute porosity and volume fraction of solid and ionomer in the catalyst layer.

template<int dim>
void FuelCellShop::Layer::ConventionalCL< dim >::declare_parameters ( const std::string &  cl_section_name,
ParameterHandler &  param 
) const
protectedvirtual

Declare parameters for a parameter file.

subsection Fuel cell data
(...)
subsection Cathode Catalyst Layer #<- This is the name fo the subsection that you specify in cl_section_name
(...)
subsection ConventionalCL #<- This is the name in (this->concrete_name)
set Platinum loading on support (%wt) = 0.46 # Mass percentage of platinum catalyst on the support carbon black
set Platinum loading per unit volume (mg/cm3) = 400 # Catalyst platinum mass loading per unit volume of CL
set Electrolyte loading (%wt) = 0.3 # Electrode loading is the weight percentage of ionomer per gram of CL
//-- Network characteristics
set Method effective transport properties in pores = Bruggemann # OPTIONS: Given|Bruggemann|Percolation -- Method used to compute effective transport properties in the void phase.
set Porosity threshold = 0.12 # Threshold value of the volume fraction of void space in the CL. If the porosity is less than this value transport does not occur
set Porosity network constant = 2.0 # Parameter used when using percolation theory
set Porosity gamma network constant = 0.0 # Parameter used when using percolation theory to account for extra diffusion
//--
set Method effective transport properties in solid phase = Bruggemann # OPTIONS: Given|Bruggemann|Percolation --- Method used to compute effective transport properties in pores
set Solid network threshold = 0.12 # Threshold value of the volume fraction of solid (electron conductive) phase in the CL. If the solid phase is less than this value transport in the fibre network does not occur
set Solid network constant = 2.0 # Parameter used when using percolation theory
set Method effective transport properties in electrolyte phase = Bruggemann # OPTIONS: Given|Bruggemann|Percolation|Iden11 -- Method used to compute effective transport properties in pores
set Electrolyte network threshold = 0.12 # Threshold value of the volume fraction of electrolyte (proton conductive) phase in the CL. If the electrolyte phase is less than this value transport in the network does not occur
set Electrolyte network constant = 2.0 # Parameter used when using percolation theory
set Method to compute active area = given # OPTIONS: given|Marr|ETEK06|ETEK07 --
set Active area [cm^2/cm^3] = 2.0e5
set Method to compute porosity = marc #OPTIONS: marc
end
end
end

Reimplemented from FuelCellShop::Layer::CatalystLayer< dim >.

Reimplemented in FuelCellShop::Layer::HomogeneousCL< dim >.

template<int dim>
double FuelCellShop::Layer::ConventionalCL< dim >::depsilon_S_cat_dprc_Pt ( const double  V_Pt,
const double  prc_Pt 
) const
inlineprotected

Inline function to compute

\[ \frac{\partial \epsilon_S^{cat}}{\partial \%Pt} \]

.

References FuelCellShop::Layer::ConventionalCL< dim >::rho_c.

template<int dim>
double FuelCellShop::Layer::ConventionalCL< dim >::depsilon_S_cat_dVPt ( const double  prc_Pt) const
inlineprotected

Inline function to compute

\[ \frac{\partial \epsilon_S^{cat}}{\partial m_{Pt}} \]

.

References FuelCellShop::Layer::ConventionalCL< dim >::rho_c, and FuelCellShop::Layer::ConventionalCL< dim >::rho_Pt.

template<int dim>
double FuelCellShop::Layer::ConventionalCL< dim >::depsilon_V_cat_depsilon_N_cat ( ) const
inlineprotected

Inline function to compute

\[ \frac{\partial \epsilon_V^{cat}}{\partial \epsilon_S^{cat}} \]

.

template<int dim>
double FuelCellShop::Layer::ConventionalCL< dim >::depsilon_V_cat_depsilon_S_cat ( ) const
inlineprotected

Inline function to compute

\[ \frac{\partial \epsilon_V^{cat}}{\partial \epsilon_S^{cat}} \]

.

template<int dim>
virtual void FuelCellShop::Layer::ConventionalCL< dim >::derivative_effective_electron_conductivity ( std::vector< double > &  ) const
virtual

Compute the derivative of the effective electron conductivity in the GDL with respect to either the solution or design parameters.

The parameters with respect to which the derivatives are computed are setup in FuelCellShop::Layer::set_derivative_flags()

Reimplemented from FuelCellShop::Layer::CatalystLayer< dim >.

template<int dim>
virtual void FuelCellShop::Layer::ConventionalCL< dim >::derivative_effective_proton_conductivity ( std::map< VariableNames, std::vector< double > > &  ) const
virtual

Compute the derivative of the effective proton conductivity in the CL with respect to either the solution or design parameters.

The parameters with respect to which the derivatives are computed are setup in FuelCellShop::Layer::set_derivative_flags()

Reimplemented from FuelCellShop::Layer::CatalystLayer< dim >.

template<int dim>
void FuelCellShop::Layer::ConventionalCL< dim >::derivative_effective_proton_conductivity_wrt_electrolyte_loading ( double &  ) const
protected

Compute the derivative of the effective proton conductivity w.r.t.

the electrolyte loading.

template<int dim>
virtual void FuelCellShop::Layer::ConventionalCL< dim >::derivative_effective_water_diffusivity ( std::map< VariableNames, std::vector< double > > &  ) const
virtual

Compute the derivative of the effective water diffusivity (lambda diffusivity) in the CL with respect to either the solution or design parameters.

The parameters with respect to which the derivatives are computed are setup in FuelCellShop::Layer::set_derivative_flags()

Reimplemented from FuelCellShop::Layer::CatalystLayer< dim >.

template<int dim>
void FuelCellShop::Layer::ConventionalCL< dim >::derivative_volume_fractions ( double &  Depsilon_S,
double &  Depsilon_V,
double &  Depsilon_N 
) const
protected

Function to compute the partial derivative of the volume fraction the different phases in the catalyst layer with respect to the design variables of the optimization problem.

template<int dim>
virtual void FuelCellShop::Layer::ConventionalCL< dim >::effective_electron_conductivity ( double &  ) const
virtual

Compute the effective electron conductivity in the CL.

Reimplemented from FuelCellShop::Layer::CatalystLayer< dim >.

template<int dim>
virtual void FuelCellShop::Layer::ConventionalCL< dim >::effective_electron_conductivity ( Tensor< 2, dim > &  ) const
virtual

Compute the effective electron conductivity in the CL as an anisotropic tensor.

Reimplemented from FuelCellShop::Layer::CatalystLayer< dim >.

template<int dim>
virtual void FuelCellShop::Layer::ConventionalCL< dim >::effective_gas_diffusivity ( const double &  ,
double &   
) const
virtual

Compute the effective diffusivty in the CL.

This routine takes the gas diffusivity from FuelCellShop::BinaryDiffusion and transforms it into an effective property taking into account the porosity and structure of the CL

Reimplemented from FuelCellShop::Layer::CatalystLayer< dim >.

template<int dim>
virtual void FuelCellShop::Layer::ConventionalCL< dim >::effective_gas_diffusivity ( Table< 2, Tensor< 2, dim > > &  ) const
virtual

Compute the effective diffusivty in the CL.

This routine takes the gas diffusivity from FuelCellShop::BinaryDiffusion and transforms it into an effective property taking into account the porosity and structure of the CL

Reimplemented from FuelCellShop::Layer::CatalystLayer< dim >.

template<int dim>
virtual void FuelCellShop::Layer::ConventionalCL< dim >::effective_proton_conductivity ( double &  ) const
virtual

Compute the effective proton conductivity in the CL.

Reimplemented from FuelCellShop::Layer::CatalystLayer< dim >.

template<int dim>
virtual void FuelCellShop::Layer::ConventionalCL< dim >::effective_proton_conductivity ( std::vector< double > &  ) const
virtual

Compute the effective proton conductivity, at all quadrature points in the cell, mainly as a function of Temperature.

Reimplemented from FuelCellShop::Layer::CatalystLayer< dim >.

template<int dim>
virtual void FuelCellShop::Layer::ConventionalCL< dim >::effective_water_diffusivity ( double &  ) const
virtual

Compute the effective water diffusivity (lambda diffusivity) in the CL.

Reimplemented from FuelCellShop::Layer::CatalystLayer< dim >.

template<int dim>
virtual void FuelCellShop::Layer::ConventionalCL< dim >::effective_water_diffusivity ( std::vector< double > &  ) const
virtual

Compute the effective water diffusivity (lambda diffusivity) at all quadrature points in the CL.

Reimplemented from FuelCellShop::Layer::CatalystLayer< dim >.

template<int dim>
double FuelCellShop::Layer::ConventionalCL< dim >::get_active_area_Pt ( ) const
inlinevirtual

Get the active area of platinum per unit volume of CL.

Reimplemented from FuelCellShop::Layer::CatalystLayer< dim >.

References FuelCellShop::Layer::ConventionalCL< dim >::Av.

template<int dim>
void FuelCellShop::Layer::ConventionalCL< dim >::get_method_transport_property_electrolyte ( std::string &  method)
inlineprotected

Get the effective transport method in the electrolyte.

References FuelCellShop::Layer::ConventionalCL< dim >::method_eff_property_electrolyte.

template<int dim>
void FuelCellShop::Layer::ConventionalCL< dim >::get_method_transport_property_pores ( std::string &  method)
inlineprotected

Get the effective transport method in the pores.

References FuelCellShop::Layer::ConventionalCL< dim >::method_eff_property_pores.

template<int dim>
void FuelCellShop::Layer::ConventionalCL< dim >::get_method_transport_property_solid ( std::string &  method)
inlineprotected

Get the effective transport method in the solid phase.

References FuelCellShop::Layer::ConventionalCL< dim >::method_eff_property_solid.

template<int dim>
virtual double FuelCellShop::Layer::ConventionalCL< dim >::get_V_Pt ( ) const
inlinevirtual

Return the platinum loading per cm3 catalyst layer.

References FuelCellShop::Layer::ConventionalCL< dim >::V_Pt.

template<int dim>
virtual void FuelCellShop::Layer::ConventionalCL< dim >::get_volume_fraction ( double &  epsilon_S_out,
double &  epsilon_V_out,
double &  epsilon_N_out 
) const
inlinevirtual
template<int dim>
void FuelCellShop::Layer::ConventionalCL< dim >::initialize ( ParameterHandler &  param)
protectedvirtual

Member function used to read in data and initialize the necessary data to compute the coefficients.

Reimplemented from FuelCellShop::Layer::CatalystLayer< dim >.

Reimplemented in FuelCellShop::Layer::HomogeneousCL< dim >.

template<int dim>
virtual void FuelCellShop::Layer::ConventionalCL< dim >::print_layer_properties ( ) const
virtual

Print out the volume fraction in the catalyst layer.

Reimplemented from FuelCellShop::Layer::PorousLayer< dim >.

Reimplemented in FuelCellShop::Layer::AgglomerateCL< dim >.

template<int dim>
void FuelCellShop::Layer::ConventionalCL< dim >::set_parameters ( const std::vector< std::string > &  name_dvar,
const std::vector< double > &  value_dvar,
const std::string &  cl_section_name,
ParameterHandler &  param 
) const
protectedvirtual

Member function used to set new parameters values in the optimization loop.

Reimplemented from FuelCellShop::Layer::CatalystLayer< dim >.

Reimplemented in FuelCellShop::Layer::HomogeneousCL< dim >.

Member Data Documentation

template<int dim>
double FuelCellShop::Layer::ConventionalCL< dim >::Av
protected

Active area of catalyst per unit volume of catalyst layer.

Referenced by FuelCellShop::Layer::ConventionalCL< dim >::get_active_area_Pt().

template<int dim>
const std::string FuelCellShop::Layer::ConventionalCL< dim >::concrete_name
static

Concrete name used for objects of this class.

This name is used when setting up the subsection where the data is stored in the input file.

The data will be store under

subsection name_specified_in_constructor
set Material id = 2
set Catalyst layer type = DummyCL # <-here I select the type of object of type CatalystLayer
subsection DummyCL # <- this is the concrete_name for this class
set all info relevant to this object
end
end
template<int dim>
double FuelCellShop::Layer::ConventionalCL< dim >::E0
protected

Theoretical open-circuit voltage under the operating conditions.

template<int dim>
double FuelCellShop::Layer::ConventionalCL< dim >::electrolyte_mu
protected

Electrolyte network constant.

template<int dim>
double FuelCellShop::Layer::ConventionalCL< dim >::electrolyte_proton_conductivity
protected

Input electrolyte proton conductivity.

template<int dim>
double FuelCellShop::Layer::ConventionalCL< dim >::electrolyte_th
protected

Electrolyte network threshold.

template<int dim>
double FuelCellShop::Layer::ConventionalCL< dim >::epsilon_N
protected

Volume fraction of Nafion in the cathode catalyst layer.

Referenced by FuelCellShop::Layer::ConventionalCL< dim >::get_volume_fraction().

template<int dim>
double FuelCellShop::Layer::ConventionalCL< dim >::epsilon_S
protected

Solid volume fraction in the catalyst layer.

Referenced by FuelCellShop::Layer::ConventionalCL< dim >::get_volume_fraction().

template<int dim>
double FuelCellShop::Layer::ConventionalCL< dim >::epsilon_V
protected

Void volume fraction (Porosity) of the catalyst layer.

Referenced by FuelCellShop::Layer::ConventionalCL< dim >::get_volume_fraction().

template<int dim>
double FuelCellShop::Layer::ConventionalCL< dim >::epsilon_W
protected

Volume fraction of water in the cathode catalyst layer.

template<int dim>
double FuelCellShop::Layer::ConventionalCL< dim >::L_CL
protected

Layer thickness.

template<int dim>
double FuelCellShop::Layer::ConventionalCL< dim >::loading_N
protected

Electrolyte loading.

Electrode loading is the weight percentage of ionomer per gram of CL loading_N = weight electrolyte / (weight Pt + weight C + weight electrolyte)

template<int dim>
double FuelCellShop::Layer::ConventionalCL< dim >::M_Pt
protected

Platinum loading at the catalyst layer per unit area.

template<int dim>
std::string FuelCellShop::Layer::ConventionalCL< dim >::method_Av
protected

Method to compute active area.

template<int dim>
std::string FuelCellShop::Layer::ConventionalCL< dim >::method_eff_property_electrolyte
protected

Method used to compute effective properties – Type of network.

Referenced by FuelCellShop::Layer::ConventionalCL< dim >::get_method_transport_property_electrolyte().

template<int dim>
std::string FuelCellShop::Layer::ConventionalCL< dim >::method_eff_property_pores
protected

Method used to compute effective properties – Type of network.

Referenced by FuelCellShop::Layer::ConventionalCL< dim >::get_method_transport_property_pores().

template<int dim>
std::string FuelCellShop::Layer::ConventionalCL< dim >::method_eff_property_solid
protected

Method used to compute effective properties – Type of network.

Referenced by FuelCellShop::Layer::ConventionalCL< dim >::get_method_transport_property_solid().

template<int dim>
std::string FuelCellShop::Layer::ConventionalCL< dim >::method_porosity
protected

Method to compute porosity.

template<int dim>
double FuelCellShop::Layer::ConventionalCL< dim >::porosity_gamma
protected
template<int dim>
double FuelCellShop::Layer::ConventionalCL< dim >::porosity_mu
protected

Porous network constant.

template<int dim>
double FuelCellShop::Layer::ConventionalCL< dim >::porosity_th
protected

Porous network threshold.

template<int dim>
double FuelCellShop::Layer::ConventionalCL< dim >::prc_N
protected

Percentage (mass fraction) of electrolyte in the catalyst layer.

template<int dim>
double FuelCellShop::Layer::ConventionalCL< dim >::prc_Pt
protected

Percentage of platinum per carbon on the catalyst layer.

template<int dim>
double FuelCellShop::Layer::ConventionalCL< dim >::rho_c
protected
template<int dim>
double FuelCellShop::Layer::ConventionalCL< dim >::rho_N
protected

Density of electrolyte.

template<int dim>
double FuelCellShop::Layer::ConventionalCL< dim >::rho_Pt
protected
template<int dim>
double FuelCellShop::Layer::ConventionalCL< dim >::sigma_p
protected

Electrolyte proton conductivity.

template<int dim>
double FuelCellShop::Layer::ConventionalCL< dim >::solid_electron_conductivity
protected

Input electron conductivity.

template<int dim>
double FuelCellShop::Layer::ConventionalCL< dim >::solid_mu
protected

Solid phase network constant.

template<int dim>
double FuelCellShop::Layer::ConventionalCL< dim >::solid_th
protected

Solid phase network threshold.

template<int dim>
double FuelCellShop::Layer::ConventionalCL< dim >::V_Pt
protected

Platinum loading at the catalyst layer per unit volume.

Referenced by FuelCellShop::Layer::ConventionalCL< dim >::get_V_Pt().


The documentation for this class was generated from the following file: