OpenFCST release 0.3 is now available in Github
Developer team
Developer team: M. Secanell, J. Zhou, A. Kosakian, M. Sabharwal, C. Balen.

A graphical user interface allows user to interact with the code better
With the GUI, it is convenient to use OpenFCST ready-to-use fuel cell models as well as toolboxes for electrical, ionic, and gas transport models
3D Reconstruction
OpenFCST comes with a 3D reconstruction capturing the shape and appearance of the real porous media

OpenFCST: The Open-source Fuel Cell Simulation Toolbox release 0.3

Dec. 11, 2016: Release 0.3 is out! Download the package in Github.

Run a fuel cell right now! OpenFCST online simulation app is available.

Release 0.3 Highlights:

  • New micro-scale simulation capabilities (gas and electron transport as well as reactions in ref. "Analysis of Catalyst Layer Microstructures: From Imaging to Performance, M. Sabharwal, L. M. Pant, A. Putz, D. Susac, J. Jankovic, M. Secanell, " Fuel Cells, 2016)
  • A two-phase flow model (saturation based)
  • Compatibility patches so that it works with the newest releases of Ubuntu and OpenSUSE
  • New graphical user interface (GUI)
  • Enjoy!

Highlights of previous release:
  • Non-isothermal membrane electrode assembly model (see M. Bhaiya, A. Putz and M. Secanell, "Analysis of non-isothermal effects on polymer electrolyte fuel cell electrode assemblies", Electrochimica Acta, 147C:294-309, 2014. DOI: 10.1016/j.electacta.2014.09.051)
  • Double-trap kinetic model available (see M. Moore, A. Putz and M. Secanell, "Investigation of the ORR Using the Double-Trap Intrinsic Kinetic Model", Journal of the Electrochemical Society 160(6): F670-F681. doi: 10.1149/2.123306jes)
  • Multi-scale framework for analysis of complex agglomerate structures available (see M. Moore, P. Wardlaw, P. Dobson, J.J. Boisvert, A. Putz, R.J. Spiteri, M. Secanell, "Understanding the Effect of Kinetic and Mass Transport Processes in Cathode Agglomerates", Journal of The Electrochemical Society, 161(8):E3125-E3137 DOI: 10.1149/2.010408jes)
  • Improved compilation script and transition to CMake: OpenFCST will automatically look for all dependent libraries and will automatically download any missing libraries if necessary. (Installation tested nightly in OpenSUSE 12.3 and Ubuntu 14.04)
  • Improved documentation: Improved user guide and folder with input files for several of the articles above.
  • Improved post-processing capabilities: New classes developed to be able to output oxide coverage, agglomerate effectiveness, relative humidity, overpotentials and more.
  • Improved post-processing capabilities: New classes to compute functionals such as overall current density and all types of heat losses.

About:

The Fuel Cell Simulation Toolbox (OpenFCST) is an open-source mathematical modelling package for polymer electrolyte fuel cells. OpenFCST builds on top of the open-source finite element libraries deal.II, therefore many of its requirements in terms of operating systems and such are the same as for deal.II. OpenFCST is distributed under the MIT License. OpenFCST has been developed as a modular toolbox from which you can develop your own applications. It contains a database of physical phenomena equations, fuel cell layers and materials, and kinetics mathematical models. In addition, it already contains several applications that allow you to simulate different fuel cell components. For example, you can simulate a cathode electrode (using either a macrohomogeneous or an ionomer-filled agglomerate model), an anode electrode or a complete membrane electrode assembly. The applications already provided in OpenFCST have been validated with respect to experimental data in the literature as well as numerical results from another model implemented in a commercial package.

OpenFCST is being developed at the Energy Systems Design Laboratory at the University of Alberta in collaboration with the Automotive Fuel Cell Cooperation Corp. that, together with the Natural Science and Engineering Research Council of Canada has provided the majority of the funding required to develope this code. The goal of OpenFCST is that research groups in academia and in industry use the current toolbox to better understand fuel cells and to develop new physics and material databases that can then be integrated in the current library.

OpenFCST is an integrated open-source tool for fuel cell analysis and design. It has been developed primarly using the deal.II finite element libraries. It seamlessly integrates several open-source pre-processing, finite element and post-processing tools in order to analyze fuel cell systems. OpenFCST contains a build-in mesh generator as well as it can import quadrilateral meshes generated with the open-source pre-processor Salome if your problem requires to simulate more complex geometries. The physics and material database in OpenFCST allow you to setup the governing equations for the most important physical processes that take place in a fuel cell. OpenFCST already implements the weak form for many governing equations that are finally solved using the finite element open-source libraries deal.II. In order to analyze your results, OpenFCST can output your results to .vtk files that can easily be read with the open-source post-processor Paraview. OpenFCST is not only an analysis tool. OpenFCST also is also integrated with the design and optimization package Dakota. Therefore, it can be used for design and optimization as well as parameter estimation.

The following publications are based on OpenFCST and provide information about the code:

  • M. Secanell, A. Putz, P. Wardlaw, V. Zingan, M. Bhaiya, M. Moore, J. Zhou, C. Balen and K. Domican, "OpenFCST: An Open-Source Mathematical Modelling Software for Polymer Electrolyte Fuel Cells", ECS Transactions 64(3): 655-680, 2014. doi:10.1149/06403.0655ecst.
  • OpenFCST development team. Fuel Cell Simulation Toolbox (OpenFCST): User and Developer's Reference Guide.

 

Contact Us

Contact:Dr. Marc Secanell, Associate Professor, University of Alberta
Address: Univeristy of Alberta, 4-9 Mechanical Engineering Building, Edmonton, T6G 2G8, CANADA
Telephone: +1-780-492-6961
FAX: +1-780-492-2200
E-mail: secanell@ualberta.ca
© 2013 Energy Systems Design Laboratory, Last Updated April 03, 2015
XHTML Validator || CSS Validator

Designed by Pratik Arvadia from DreamTemplates      ||      Maintained by Marc Secanell  &  Madhur Bhaiya  &   Jie Zhou